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Brownian dynamics simulations of self-diffusion and shear viscosity of near-hard-sphere colloids
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We use Brownian dynamics simulations to calculate the long-time self-diffusion coefficients and
Newtonian viscosities of model near-hard-sphere colloidal liquids without hydrodynamic interactions
using a continuous potential: (a) an r ™" interaction between the model colloidal particles, with ex-
ponents n varying between 6 and 72, and (b) a Yukawa potential. We show that the diffusion coefficients
increase and the viscosity decreases as the interaction potential becomes softer. The time-dependent
self-diffusion coefficients and shear-stress correlation functions can be represented by a fractional ex-

ponential form at all volume fractions up to 0.5.

PACS number(s): 82.70.Dd, 66.10.—x, 61.20.Ja, 83.50.Fc

The Brownian dynamics (BD) computer simulation
method evolves N interacting model colloidal particles
with index i mass m;, and position r; through phase
space. A popular BD algorithm is based on the Langevin
equations of motion [1,2]

m;¥,=F,+R,— &, , (1)

where F is a body force on the particle R is the Brownian
force, and £ is the friction coefficient. If derived from
pairwise additive direct interactions V(r) between the
particles, then

N
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The position update algorithm for the particles is
r(t +h)=r(t)+[F(t)+R(t,h)]n /E , (3)

where h is the time step and R(¢,4) is a normally distri-
buted random force with zero mean and
(R%(t,h))=6kzTE/h. Although in any real colloidal
liquid, solvent-mediated many-body hydrodynamical
forces on the colloidal particles will be an essential com-
ponent of the dynamics and physical properties, it is in-
teresting to discover the properties of the above model
colloidal system which may be considered in some sense
as a “reference” state, in not including these. Many
simulation studies have been performed using this algo-
rithm, incorporating different analytic forms for the in-
teraction potential. One potential form used by this
group for model sterically stabilized colloids is the
inverse-power potential [3]

V(ir)=elo/r)", 4)

with n =36. While Léwen and Szamel [4] have used the
Yukawa potential,
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V(r)=eo 2Bl ()

where again € and o set the energy and length scales.
This analytic form is more appropriate for charge stabi-
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lized systems. The hard-sphere potential has been con-
sidered independently (but with similar algorithms) by
Cichoki and Hinsen [5,6] for self-diffusion and by Heyes
and Melrose [3] for rheology.

Despite many BD studies, there is still a lack of data
on the influence of the potential form on the transport
properties of model colloidal systems obeying these equa-
tions of motion, which we address here. In this work we
explore the effect of the interaction potential on the
long-time self-diffusion coefficients D and Newtonian
shear viscosity using the Green-Kubo method and test a
generalized Stokes-Einstein relationship for finite volume
fraction colloidal liquids. We consider the mean square
displacement W (t) of a tagged particle in a suspension,

W()=L[r()—r(7]) . 6)

The rate of change of W(t) gives the long-time self-
diffusion coefficient

_d(w()
d ’

We find, as did Cichocki and Hinsen [5,6] that Eq. (7)
converges more rapidly to the asymptotic limit than
another expression W (t)/t. At infinite dilution in a
liquid of viscosity 7, a Brownian particle of diameter o
has a self-diffusion coefficient Dy=kzT /£, where
&=3mn,0 is the friction coefficient. At finite concentra-
tion the diffusion process is slowed down by the interac-
tion of the tagged particle with the other particles. The
time scale of the velocity fluctuation of a single large
mass m, called the Brownian relaxation time, is
7g=m /&. For times t >>75 but t <<7,, the time it takes
a particle to move a distance of order its diameter, the
self-diffusion coefficient is Dg, the so-called short-time
self-diffusion coefficient. The hydrodynamic interactions
occur on the time scale as 75 so these contribute to Dg.
For t >>7; the tagged particle experiences a substantial
change in the interaction force from the other particles
and distorts the surrounding cage of colloidal particles as
it moves through the liquid. This leads to a further de-
crease in the self-diffusion below that of Dg. The mean

D (7)
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square displacement of the particle in this time domain is
termed the “long-time” diffusion coefficient D. The natu-
ral time scale for structural evolution of colloidal systems
isa?/D,, where a =0 /2.

We have carried out BD simulations using the model
above to calculate D for a range of interaction potential
forms and particle volume fractions. The time step in the
simulations, 4, was chosen with # =82, /2D, where §,, is
the standard deviation of the random displacement. The
value of &,, is chosen as large as possible within the
bounds of algorithm stability and accuracy (determined
empirically from a trial series of simulations). We typi-
cally chose the value

75 =0.316X 1030 (m /€)'/?

and 8,, =0.0090. Smaller time steps have to be adopted
for steeper potentials. For the steepest potential (n =72)
we chose 8,, =0.0040. The value of A7z <107 * in these
potential-based reduced units is comparable to the values
chosen by other workers (e.g.,”). The simulations were
typically for 10° time steps. For ¢ > 0.4 simulations were
carried out for N =108, 256, 500, and 864 particles and
the transport coefficients in the thermodynamic limit ob-
tained by N ! extrapolation. In the ¥ (r) we set e=kjpT.
The calculations were performed in the volume fraction
range 0.1 <¢ <0.5.
The components of the stress tensor, o, are

— 2SS (v ) ®)
Tap™ N i§1j=12'+1 Toij?gij / Tij dr, )

where p=N/V, V is the volume of the N particles, and
r;;=r;—1;. The unimportant kinetic component to the
stress cannot be computed from the current algorithm.

In Fig. 1 the potentials V(r) used for these computa-
tions are compared. The inverse-power potential tends to
the hard-sphere interaction as n — . The Yukawa po-
tential with A=38 used by Lowen and Szamel [4] for r > o
falls between the inverse-power potential choosing values
n =6 and 12. In Fig. 2 we show the volume fraction ¢
(=wNo3/6V) dependence of D. We note that the values
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FIG. 1. The potential forms used in the simulations. The key
is on the figure and Y denotes the Yukawa potential with A =38.
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FIG. 2. The diffusion coefficients for the BD model systems
as a function of particle volume fraction using the potential
forms in Fig. 1. Y-HB denotes Yukawa simulations from this
work and Y-LS denotes corresponding data from [4].

of D for n =36 and 72 are statistically indistinguishable
from the hard-sphere data computed by Cichocki and
Hinsen [5,6]. This suggests that the inverse-power poten-
tial for n>36 is a reasonable representation for the
hard-sphere interaction, at least in this context. As the
interaction becomes softer, then the value of D increases
at fixed ¢. We have computed D using the same Yukawa
potential as Lowen and Szamel [4]. Our data follow
closely but are consistently a little lower than those of [4].
For example, D /D, are 0.77 from [4] and 0.73+0.02
from this work at ¢ =0.157. The corresponding values at
¢=0.314 are 0.55 and 0.52+0.01 respectively. The
simulations of [4] were of duration ~10a%/D, and short
compared with those in this work which were for typical-
ly >100a?/D,. We noticed that for simulation times
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FIG. 3. The diffusion coefficient relaxation function Cp(t)
defined in Eq. (10) and fitted using Eq. (11) for the states (a)
n =36, $=0.472, with a fit 8=0.4643 and 7 =0.0162; (b) the
Yukawa potential from Eq. (5) with $=0.314, A=38, and with a
fit B=0.7555 and 7'=0.0588; and (c) n =36, $=0.350 with
B=0.5895 and 7' =0.0335.
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FIG. 4. As for Fig. 3 but for C(¢): (a) n =36, $=0.472, with
a fit =0.3094 and 7'=0.004 75; (b) the Yukawa potential from
Eq. (5) with ¢=0.314 and A=8, with a fit §=0.6192 and
7=0.0369; and (c) n =36, ¢=0.350, with B=0.3549 and
7'=0.0040.

~10a2?/D, we still observed significant changes in D. As
for the potentials themselves, the Yukawa D fall in be-
tween those of the n =6 and 12 inverse-power potentials.
The data follow the reasonable trend that the softer the
interaction, the higher D is for the same particle volume
fraction.

We define a time-dependent diffusion coefficient

dw
dt -’
The short-time diffusion coefficient in this model is D;
then the relaxation function Cp(t),
D()—D
Do _D ’

D(t)= 9)

Cp(1)= (10)

has been defined [5,6]. We have found that our continu-
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FIG. 5. Plot of the stretched exponential relaxation time
spectrum distribution function for (a) B=0.3094 and
7=0.00475, (b) B=0.6192 and 7'=0.0369, and (c) B=0.7555
and 7' =0.0588.
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FIG. 6. The BD relative Newtonian viscosities as a function
of volume fraction, ¢, for the model systems. KD is the
Krieger-Dougherty representation of the experimental data.

ous potential data for Cp(t) fit well to a stretched ex-
ponential form,

Cplt)=exp[ —(¢/7')P], (1

where 7' and B are adjustable parameters. Cichocki and
Hinsen also observed this for their hard-sphere systems
(they chose B=0.5). We find that B increases with the
potential softness and decreasing density. Three exam-
ples of computed normalized Cj(z) and their least
squares fitted stretched exponentials are given in Fig. 3.

The shear-stress time autocorrelation function C,(¢) is
defined as

N

C ()= (0,,(0)a,,(1) . (12)

where ( ) indicates that an average over time origins in
Eq. (12) has been used from Levesque, Verlet, and Kurki-
jarvi [8] to calculate the shear viscosity of molecular

liquids via a Green-Kubo relationship.
This formulation can be used in the Brownian dynam-
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FIG. 7. The Stokes-Einstein ratio as a function of volume
fraction for the model systems.
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ics in the modified form
=n.+ [ “C,z
To=n.+ [ “C(ndt , (13)

where 7)) is the Newtonian viscosity (the zero-shear limit-
ing viscosity) and 7, is the so-called infinite-shear-rate
viscosity. The BD algorithm and the computed stresses
and viscosities omit many-body hydrodynamics, which
are clearly an important factor in determining the
behavior of real colloidal liquids. As in a previous study
[3] we approximate the hydrodynamic contribution to the
viscosity by adding on the experimental value for the
infinite-shear-rate viscosity, 7.. (The Ermak algorithm
gives a value of 7,=0.) 7, is obtained using the
Krieger-Dougherty (KD) formula

Ne /M, =(1—¢/0.71)"2,

which is a good fit to a range of experimental colloid
viscosity data [9]. In Fig. 4 we show the C,(¢) for some
of the states used. We note again that for the C,(¢) also,
the stretched exponential represents these data well.
Both Cp(t) and C,(¢) can be rewritten as a superposition
of exponential relaxation functions, e.g.,

C,(1)=G,, waPS(T)e_t/TdT ) (14)

with the normalization condition [~Pg(7)=1. If we
define H(7)=7Pg(7), then the spectrum of relaxation
times for three of the stretched exponentials computed
for Figs. 3 and 4 are given in Fig. 5 using the numerical
procedure developed in Ref. [10] specifically for the
stretched exponential. The figure shows that as f—1,
the distribution of relaxation times becomes more sharply
peaked.

In Fig. 6 it is interesting to compare the computed 7,
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using Eq. (13) with the predictions of the KD formula
Mo=70/7,=1/(1—¢/0.63)* .

We note that as the potential becomes steeper, the rela-
tive Newtonian viscosity increases for fixed ¢. The value
of n=36 gives the best overall agreement with KD,
which in some sense validates Eq. (13). The Stokes-
Einstein relationship valid for -0 is D7,,/Dy=1. Al-
though experimental D,/D and 7,, show a similar
volume fraction dependence, the evidence for the Stokes-
Einstein relationship being valid at finite ¢ is inconclusive
at present. From experiment Imhof et al. [11] concluded
that a generalized Stokes-Einstein relationship does not
hold. Adopting the experimental data for D from [12]
and the KD formula for 7,;, we obtain a more reasonable
result of D7,,/Dy=0.71£0.1 for the experimental
0.1<$<0.5 data. These BD computations give
Du,,/D, values which increase with volume fraction (see
Fig. 7). The difference is caused by the experimental D
being significantly lower than the BD values, presumably
because of the lack of many-body hydrodynamics in the
model. In some sense it is inconsistent to include hydro-
dynamics in the computed 7, in Eq. (13) and yet not in-
clude it in D also. Therefore, with the present simple BD
model it is expected that there should be differences with
experimental trends.
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computer at the University of London Computer Centre.
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